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Low-temperature photoluminescence (PL) measurements on
pseudomorphic modulation-doped transistors with a
low-temperature (LT) GaAs layer in the GaAs buffer layer clearly show
a decrease in the quantum-well/PL transition energies compared to a
structure with no LT GaAs. Self-consistent calculations of the electron
and hole band structure confirm that the observed increase in the
redshift in PL energies with increasing quantum-well/LT-GaAs
spacing can be attributed to band bending induced by the Fermi level

Abstract

pinning at the undoped-GaAs/LT-GaAs interface.
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Introduction
Recently there has been much interest in the properties [1], device appli-
cations [2,3], and mechanism [4–8] of high-resistivity low-temperature
GaAs (LT GaAs), which is grown by molecular beam epitaxy with a
substrate temperature of around 200 to 300 °C. LT GaAs contains a high
concentration of arsenic antisite defects (AsGa), which act as nonradiative
recombination centers [5–7]. Consequently, LT GaAs exhibits a weak
photoluminescence (PL) [1] and a subpicosecond electron-hole recombi-
nation time [9]. Recently we published the results of LT PL measurements
on a number of pseudomorphic high-electron-mobility transistor
(PHEMT) structures, which have an LT-GaAs layer embedded in the
nominally undoped GaAs buffer layer at various depths below the quan-
tum well (QW) [10]. Our results clearly showed a decrease in the PL
energy (redshift) of the PHEMTs with LT GaAs, due to the quantum-
confined Stark effect [11] and a novel band-bending effect of LT GaAs.

In this report we present the results of self-consistent modeling of this
band-bending effect for the PHEMT structures, taking into account the
Fermi level pinning at the interface between the normal-temperature not
intentionally doped (NID) GaAs and the LT GaAs. Calculations of the
electron and hole subband energies indicate that the redshift (decrease) in
PL energy, which increases with the LT-GaAs/QW separation, can be
explained by the variations in the electric field in the NID GaAs due to
pinning of the Fermi level at the NID-GaAs/LT-GaAs interface.
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Experimental Results
The PHEMTs used in this study were grown by molecular beam epitaxy
on semi-insulating GaAs. The PHEMT heterostructure consists of the
following layers:

• 4000 Å of NID GaAs grown at 600 °C,

• 4000 Å of LT GaAs grown at 220 °C,

• a layer of NID GaAs grown at 600 °C whose thickness d varies for differ-
ent samples,

• 150 Å of In0.2Ga0.8As,

• 50 Å of undoped Al0.3Ga0.7As,

• 100 Å of Si-doped (6 × 1018 cm–3) Al0.25Ga0.75As,

• 200 Å of undoped Al0.25Ga0.75As, and

• 200 Å of Si-doped (2 × 1018 cm–3) GaAs.

A control PHEMT was grown without any LT GaAs; instead it has a 1-µm
NID-GaAs buffer, which was grown at 600 °C. Note that the LT GaAs is
annealed by the growth of the subsequent layers at 600 °C. Sheet resis-
tance and Shubnikov-de Haas (SdH) measurements show that the two-
dimensional electron gas (2DEG) density ns and drift mobility are not
degraded by the inclusion of the LT GaAs in the buffer, in agreement with
previous results [12]. At 300 K, the measured ns is 1.9 × 1012 cm–2, and the
measured electron mobility is 6000 cm2/Vs. The 2DEG mobility at 4.2 K
for the PHEMTs with LT GaAs ranges from 2.7 × 104 to 8.3 × 104 cm2/Vs.
The SdH measurements also confirm that the n = 2 conduction subband
of the InGaAs QW is occupied for all samples. The measured electron
density in the second subband is 1 × 1011 cm–2 for the structure with no
LT GaAs and approximately 2 × 1011 cm–2 for the structures with LT
GaAs. PL measurements were carried out with the samples mounted in a
variable-temperature liquid helium cryostat. The 5145-Å emission from
an argon ion laser was used to excite the structures with excitation inten-
sity of about 1 W/cm2. The PL spectrum was measured with a 1-m mono-
chromator and a germanium photodetector.

Figure 1 shows the 5.8 K PL spectra for structures with QW/LT-GaAs
spacings of 0.3, 0.8, and 1.6 µm and for the structure with no LT-GaAs
layer. The observed PL spectrum of the sample without the LT GaAs at
5.8 K shows a 16-meV-wide (full width at half maximum) asymmetric
feature having a peak at 1255 meV, and a relatively sharp feature at
1315 meV having a width of 3 meV and an integrated PL intensity that is
a factor of approximately 3 greater than that of the 1255-meV peak. Two
observations—the difference between the low-energy and the high-
energy peaks and the dependence of the PL on the electric field of the
NID-GaAs buffer layer—lead us to conclude that the observed PL can be
attributed to the recombination of n = 1 and n = 2 subband electrons from
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the degenerate 2DEG with m = 1 heavy holes in the InGaAs QW. The low-
energy PL feature (designated 11H) is attributed to the transition of n = 1
electrons to m = 1 heavy holes. The high-energy PL feature (designated
21H) is attributed to the transition of n = 2 electrons to m = 1 heavy holes.
The width of the 11H PL feature is broadened by indirect recombination
processes, which are facilitated by the scattering of carriers in the QW by
ionized impurities in the doped AlGaAs barrier [13]. The relatively large
peak intensity, sharp symmetric lineshape, and narrow width of the 21H
PL feature suggest that this feature has a strong component from the
recombination of n = 2 subband excitons.

These data show that the structures with an LT-GaAs layer exhibit a
redshift in their PL transition energies. The 11H and 21H PL energies
decrease with increasing QW/LT-GaAs spacing d, for spacings up to
1.6 µm. Note that the shift in transition energy seems to approach an
asymptote at d ≈ 1.6 µm, as shown in figure 1. When the structure with d
= 1.6 is compared to the structure without LT GaAs, the observed red-
shifts of the 11H and 21H PL energies are 17.3 and 21.7 meV, respectively.
Figure 1 shows that for structures with an LT-GaAs layer, the 21H PL
lineshape is asymmetric with a linewidth of ≈6.2 meV, compared to a
linewidth of 3 meV for the sample without LT GaAs. In contrast, the
width and line shape of the 11H PL are the same for all the structures.
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Theory
We carried out self-consistent Schrödinger-Poisson calculations of the
conduction and valence band energy levels and distribution of charge in
this heterostructure using the boundary condition that at the NID-GaAs/
LT-GaAs interface the Fermi level is pinned at 0.7 eV below the conduc-
tion band [14]. In our calculations the primary effect of the LT-GaAs layer
is modeled by the Fermi level pinning at the NID-GaAs/LT-GaAs inter-
face. We assume that the background doping in the NID GaAs is negli-
gible, which means that the electrostatic electric field is constant across
the NID-GaAs layer adjacent to the InGaAs QW. This electric field bound-
ary condition varies for the different structures because of the variation in
d. For the structure without an LT-GaAs layer, the electric field boundary
condition is given by the midgap pinning of the Fermi level at the NID-
GaAs/semi-insulating-GaAs substrate interface. We use the Hartree
approximation for the valence band calculation, taking into account the
increased bandgap of the strained InGaAs layer [15]; this calculation did
not include many-body effects.

Our calculations confirm that the n = 1 and n = 2 conduction subbands are
occupied, and good agreement with the magnetotransport-determined
electron densities is obtained if the effective AlGaAs doping is 4 × 1018

cm–3. The calculated PL energies and oscillator strengths verify that we
have observed the 11H and 21H transitions. We obtained excellent agree-
ment between the observed and calculated values of 11H and 21H ener-
gies using the published strained bandgap renormalization parameters
[15]. Our calculations confirm that, in comparison to the conduction
subbands, the m = 1 hole subband energy is insensitive to changes in the
electric field in the NID GaAs.

Figure 2 shows the theoretical and experimental values of the 11H and the
21H PL energies as a function of the electric field in the NID GaAs. As
confirmed by the good agreement between theory and experiment for the
structures with LT GaAs, the observed decrease in the transition PL
energies as d increases can be attributed to the quantum-confined Stark
effect (QCSE), which has been observed before in undoped QWs in a p-i-n
structure [11]. For our modulation-doped PHEMTs, the QCSE is caused
by two opposing electric fields in the structure: the self-consistent electric
field at the AlGaAs/InGaAs interface and the electric field in the NID-
GaAs layer adjacent to the QW. The Fermi level pinning at the NID-
GaAs/LT-GaAs interface results in a sample-to-sample variation of the
electric field in the NID-GaAs layer, resulting in a blueshift in the 11H and
21H PL energies with increasing electric field in the NID GaAs.

The present theoretical model does not explain the large observed 11H
and 21H PL energies of the sample with no LT GaAs. This disagreement
could be due to a large error in the thickness of the NID-GaAs layer, a
variation in the InGaAs composition, or a complicated doping profile in
the NID GaAs and the semi-insulating GaAs buffer layers of the sample
with no LT GaAs. Further experimental and possibly more theoretical
work is needed to resolve this discrepancy.
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Conclusion
In summary, low-temperature photoluminescence measurements on
pseudomorphic modulation-doped transistors with a low-temperature
GaAs layer in the GaAs buffer layer clearly show a decrease in the
quantum-well PL transition energies compared to a structure with no LT
GaAs. Self-consistent calculations of the electron and hole band structure
confirm that the observed increasing redshift in PL energies with increas-
ing QW/LT-GaAs spacing can be attributed to band bending induced by
the Fermi level pinning at the NID-GaAs/LT-GaAs interface. These
results are relevant to high-speed electronic and optoelectronic semicon-
ductor devices, which use LT-GaAs buffer layers.
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